Utility of the Right Ventricular Early Inflow-Out Flow Index in the Assessment of Mortality in COVID-19

Document Type : Original Article


Department of Cardiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, IR Iran.


Background: The coronavirus disease 2019 (COVID-19) outbreak continues to spread worldwide, hence the increasing attention to the predictors of mortality. However, there is no easy prognostic risk score to predict in-hospital mortality.
We aimed to assess the efficacy of the right ventricular early inflow-outflow index (RVEIO) as a predictor of early mortality in patients with thromboembolism. Additionally, we assessed acute respiratory distress syndrome, which is deemed a complication of COVID-19 and an etiology of acute cor pulmonale.
Methods: This single-center, observational cross-sectional study assessed laboratory data and electrocardiographic and echocardiographic findings of patients with a diagnosis of COVID-19 based on a positive polymerase chain reaction test and lung involvement exceeding 20% in the non-intensive care units of our hospital.
Results: The study population comprised 360 patients (mean age=54.46 y, 61.1% male). The mean RVEIO index was 3.40 ± 1.14, the mean right ventricular peak systolic myocardial velocity (RVsm) was 12.29 ± 3.81 cm/s, and the mean tricuspid annular plane systolic excursion (TAPSE) was 22.41 ± 4.97 cm. No significant difference was found in the RVEIO index between the patients who were discharged and those who expired (3.26 ± 1.25 vs 3.31 ± 1.29, respectively), nor was there a correlation between the RVEIO index and admission to the intensive care unit. The RVEIO index was not a predictor of RV dysfunction, as assessed by RVsm and TAPSE. Patients who suffered from myocardial infarction had a significantly higher RVEIO index.
Conclusions: None of the echocardiographic findings, including the RVEIO index, was an accurate predictor of RV dysfunction, mortality, and inflammation levels in our patients with COVID-19. Accordingly, they should not be relied upon for clinical decision-making and management. (Iranian Heart Journal 2021; 22(3): 104-114)


  1. Wenjie Tian, Wanlin Jiang MBBS, , Jie Yao MS, Christopher J. Nicholson, Rebecca H. Li, Haakon H. Sigurslid Luke Wooster, Jerome I. Rotter, Xiuqing Guo. Predictors of mortality in hospitalized COVID‐19 patients: A systematic review and meta‐analysis. J Med Virol. 2020; 92:1875–1883.
  2. Fei Zhou, Ting Yu, Ronghui Du, Guohui Fan, Ying Liu, Zhibo Liu, Jie Xiang, Yeming Wang, Bin Song, Xiaoying Gu, Lulu Guan, Yuan Wei, Hui Li, Xudong Wu, Jiuyang Xu, Shengjin Tu, Yi Zhang, Hua Chen, Bin Cao .Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study.Lancet, ISSN: 0140-6736, Vol: 395, Issue: 10229, Page: 1054-1062
  3. Chen, T. et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020, 368. https://doi.org/10.1136/bmj.m1091(2019).
  4. Duca, A., Piva, S., Focà, E., Latronico, N. & Rizzi, M. Calculated decisions: brescia-COVID respiratory severity scale (BCRSS)/algorithm. Emerg. Med. Pr. 22(5 Suppl), 1–2 (2020).
  5. Vincent, J. L. et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 22(7), 707–710 (1996). CAS Article Google Scholar
  6. Iba, T., Di Nisio, M., Levy, J. H., Kitamura, N. & Thachil, J. New criteria for sepsis-induced coagulopathy (SIC) following the revised sepsis definition: a retrospective analysis of a nationwide survey. BMJ Open. 7,9. https://doi.org/10.1136/bmjopen-2017-017046(2017).
  7. Gue, Y.X., Tennyson, M., Gao, J. et al. Development of a novel risk score to predict mortality in patients admitted to hospital with COVID-19. Sci Rep 10, 21379 (2020). https://doi.org/10.1038/s41598-020-78505-w
  8. Johns Hopkins University, 2021. Johns Hopkins Coronavirus Resource Center. Available at. https://coronavirus.jhu.edu/. Accessed on Februrary 18th 2021.
  9. Edgar Argulian, Karan Sud, Birgit Vogel, Chandrashekar Bohra, Vaani P. Garg, Soheila Talebi, Stamatios Lerakis, Jagat Narula. Right Ventricular Dilation in Hospitalized Patients With COVID-19 Infection. J Am Coll Cardiol Img. 2020 Jul 15. Epublished DOI:10.1016/j.jcmg.2020.05.010
  10. Acar, E, İzci, S, Inanir, M, Yılmaz, MF, Izgi, IA, Kirma, C. Right Ventricular Early Inflow‐Outflow Index—A new method for echocardiographic evaluation of right ventricle dysfunction in acute pulmonary embolism. Echocardiography. 2020; 37: 223–230. doi.org/10.1111/echo.14591.
  11. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015 Jan; 28(1):1-39.e14. doi: 10.1016/j.echo.2014.10.003. PMID: 25559473.
  12. Jia H. Pulmonary Angiotensin-Converting Enzyme 2 (ACE2) and Inflammatory Lung Disease. Shock. 2016 Sep; 46(3):239-48. doi: 10.1097/SHK.0000000000000633. PMID: 27082314.
  13. Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X, Wen F, Huang X, Ning G, Wang W. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov. 2020; 6():11.
  14. Wentao Ni, Xiuwen Yang, Deqing Yang, Jing Bao, Ran Li, Yongjiu Xiao, Chang Hou, Haibin Wang, Jie Liu, Donghong Yang, Yu Xu, Zhaolong Cao, Zhancheng Gao. Role of angiotensin-converting enzyme 2 (ACE2) in COVID-19. Crit Care 24, 422 (2020). https://doi.org/10.1186/s13054-020-03120-0
  15. Li K, Fang Y, Li W, Pan C, Qin P, Zhong Y, Liu X, Huang M, Liao Y, Li S. CT image visual quantitative evaluation and clinical classification of coronavirus disease (COVID-19). Eur Radiol. 2020.
  16. Huang, Y., Tan, C., Wu, J. et al. Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir Res 21, 163 (2020). https://doi.org/10.1186/s12931-020-01429-6
  17. Su MC, Hsieh YT, Wang YH, Lin AS, Chung YH, Lin MC. Exercise capacity and pulmonary function in hospital workers recovered from severe acute respiratory syndrome. Respiration. 2007; 74(5):511–6.
  18. Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. Published online July 27, 2020. doi:10.1001/jamacardio.2020.3557
  19. John F. Park, Somanshu Banerjee and Soban Umar. In the eye of the storm: the right ventricle in COVID-19 Pulm Circ. 2020 Jul-Sep; 10(3): 2045894020936660. doi: 10.1177/2045894020936660
  20. Pagnesi M, Baldetti L, Beneduce A, et al. Pulmonary hypertension and right ventricular involvement in hospitalised patients with COVID-19. Heart 2020; 106:1324-1331.
  21. Teresa Segura de la Cal, Jorge Nuche, Carmen Jiménez López-Guarch, Carmen Pérez-Olivares, Maite Velázquez, Francisco López-Medrano, María Jesús López Gude, Sergio Alonso Charterina, Fernando Arribas Ynsaurriaga, Pilar Escribano Subías. Unexpected Favourable Course of Coronavirus Disease 2019 in Chronic Thromboembolic Pulmonary Hypertension Patients.Archivos DE Broncoeumologica. DOI: 10.1016/j.arbres.2020.06.004
  22. Jorge Nuche, Carmen Pérez-Olivares, Teresa Segura de la Cal, Carmen Jiménez López-Guarch, Fernando Arribas Ynsaurriaga, Pilar Escribano Subías. Clinical course of COVID-19 in pulmonary arterial hypertension patients.Revista Espanola de Cardiologica. 2020; 73(9):775-778. DOI: 10.1016/j.rec.2020.05.015.
  23. Guo T, Fan Y, Chen M, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. Published online March 27, 2020. doi:10.1001/jamacardio.2020.1017
  24. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA. Published online February 24, 2020. doi:10.1001/jama.2020.2648
  25. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. Published online March 27, 2020. doi:10.1001/jamacardio.2020.1096
  26. Yancy CW, Fonarow GC. Coronavirus Disease 2019 (COVID-19) and the Heart—Is Heart Failure the Next Chapter? JAMA Cardiol. Published online July 27, 2020. doi:10.1001/jamacardio.2020.3575
  27. Lindner D, Fitzek A, Bräuninger H, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. Published online July 27, 2020. doi:10.1001/jamacardio.2020.3551
  28. Babapoor-Farrokhran S, Rasekhi RT, Gill D, Babapoor S, Amanullah A. Arrhythmia in COVID-19 [published online ahead of print, 2020 Aug 14]. SN Compr Clin Med. 2020; 1-6. doi:10.1007/s42399-020-00454-2
  29. Gopinathannair R, Merchant FM, Lakkireddy DR, Etheridge SP, Feigofsky S, Han JK, Kabra R, Natale A, Poe S, Saha SA, Russo AM COVID-19 and cardiac arrhythmias: a global perspective on arrhythmia characteristics and management strategies.J Interv Card Electrophysiol. 2020 Nov; 59(2):329-336
  30. Capoferri G, Osthoff M, Egli A, Stoeckle M, Bassetti S. Relative bradycardia in patients with COVID-19 [published online ahead of print, 2020 Aug 18]. Clin Microbiol Infect. 2020;S1198-743X(20)30495-X. doi:10.1016/j.cmi.2020.08.013
  31. Anjali Bhatla, Michael M. Mayer, Srinath Adusumalli,Matthew C. Hyman, Eric Oh, Ann Tierney, et al. COVID-19 and cardiac arrhythmias. Heart Rhythm, Vol 17, No 9, September 2020 .1439-1443. https://doi.org/10.1016/j.hrthm.2020.06.016.
  32. Zhao K, Li R, Wu X, et al. Clinical features in 52 patients with COVID-19 who have increased leukocyte count: a retrospective analysis [published online ahead of print, 2020 Jul 10]. Eur J Clin Microbiol Infect Dis. 2020; 1-9. doi:10.1007/s10096-020-03976-8
  33. Sahu BR, Kampa RK, Padhi A, Panda AK. C-reactive protein: A promising biomarker for poor prognosis in COVID-19 infection. Clin Chim Acta. 2020; 509:91-94. doi:10.1016/j.cca.2020.06.013
  34. Luo X, Zhou W, Yan X, Guo T, Wang B, Xia H, Ye L, Xiong J, Jiang Z, Liu Y, Zhang B, Yang W. Prognostic value of C-reactive protein in patients with COVID-19. Clin Infect Dis. 2020 May 23:ciaa641. doi: 10.1093/cid/ciaa641. Epub ahead of print. PMID: 32445579; PMCID: PMC7314209.
  35. Hendren NS, Drazner MH, Bozkurt B, Cooper LT Jr. Description and Proposed Management of the Acute COVID-19 Cardiovascular Syndrome. Circulation. 2020; 141(23):1903-1914. doi:10.1161/CIRCULATIONAHA.120.047349
  36. Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): evidence from a meta-analysis [published online March 10, 2020]. Prog Cardiovasc Dis. doi: 10.1016/j.pcad.2020.03.001.
  37. Zhang L, Feng X, Zhang D. et al. Deep vein thrombosis in hospitalized patients with coronavirus disease 2019 (COVID-19) in Wuhan, China: prevalence, risk factors, and outcome. Circulation 2020; 142 (02) 114-128
  38. Aika Matsumoto, Toshiaki Mano, Akiko Goda, Shohei Fujiwara, MasatakaSugahara, Kumiko Masai, Yuko Soyama, Tohru Masuyama, significance of left ventricular early inflow-outflow index for mitral regurgitation severity., J Am Coll Cardiol. 2016 Apr, 67 (13 Supplement) 2217.
  39. Lee, Ming‐Ming, Salahuddin, Ayesha, Garcia, Mario, Spevack, Daniel. Left Ventricular Early Inflow-Outflow Index: A Novel Echocardiographic Indicator of Mitral Regurgitation Severity. May 2015. Journal of the American Heart Association. 4(6):e000781-e000781. DOI: 10.1161/JAHA.113.000781
  40. Izgi IA, Acar E, Kilicgedik A, Guler A, Cakmak EO, Demirel M, Izci S, Yilmaz MF, Inanir M, Kirma C. A new and simple method for clarifying the severity of tricuspid regurgitation. Echocardiography. 2017 Mar; 34(3):328-333. doi: 10.1111/echo.13458. Epub 2017 Jan 28. PMID: 28130798.